
2025/08/16 01:18 1/11 RLG Agent

Flashheart.de - https://flashheart.de/

RLG Agent

Installation

The agent is written in Java and therefor available on nearly any platform. There are ready-made
packages for Windows, Mac, Linux and Raspbian. The Raspbian version is only available as a service
or demonized version. Linux versions are distributed via a package repository at flashheart.de. Refer
to the download page for more information.

Hard- and Software

Agents are supposed to run on Raspberry Pi computers with several input and output devices
connected to them. Like LED stripes, sirens (switched by relay boards), push buttons, LCDs etc. But it
is also possible to run them on a standard desktop computers (Mac, Windows, Linux). In this case,
they start up a Swing GUI to simulate the aforementioned devices on the screen or via the sound
card.

https://www.flashheart.de/doku.php/de:downloads#linux

Last update: 2024/12/28 12:53 rlgs:en:agents-detail https://flashheart.de/doku.php/rlgs:en:agents-detail

https://flashheart.de/ Printed on 2025/08/16 01:18

We use the Pi4J framework to connect the hardware to our Java source code. The whole framework is
about to change drastically with the version 2. But for now we stick to Version 1, which still relies on
the now deprecated WiringPi project, as it runs very well. Please note, that the Pin numbering used in
the config files are named according to the WiringPi scheme.

WiringPi is not available in Raspbian anymore or as sourcecode. Until we are moving on to pi4j 2.0
(which based on pigpio), we stick with a source code mirror for WiringPi on GitHub. Which works very
well for us.

There is also a standard PCB which works best for a Raspberry Pi setup. You can get Your own PCBs
here.

Workspace

The agent creates a workspace folder (if missing). The folder's location has to be specified via a -D
argument on the java command line.

https://flashheart.de/lib/exe/detail.php/common:ui-agent-1-5.gif?id=rlgs%3Aen%3Aagents-detail
https://pi4j.com/
http://wiringpi.com/
https://easyeda.com/tloehr/rlg-mainboard-v11_copy
https://easyeda.com/tloehr/rlg-mainboard-v11_copy

2025/08/16 01:18 3/11 RLG Agent

Flashheart.de - https://flashheart.de/

java -jar -Dworkspace=/home/pi/rlgagent

The standard installation packages contain this setting in the rlgagent.vmoptions file located in
the installation folder.

Linux: /opt/rlgagent or /opt/rlagentd. The latter for an installation as a service or
deamon.
Mac: /Applications/rlgagent

This folder contains the config.txt file, the log file directory and the mqtt persistence folder. It usually
looks like this:

rlgagent
|--rlgagent-385d8f4a-a0b7-496a-b3ca-7fe0f1cf20a0-tcplocalhost1883
| |--.lck
|--config.txt
|--logs
| |--2022-03-08.rlgagent.log.gz
| |--2022-03-11.rlgagent.log.gz
| |--2022-03-07.rlgagent.log.gz
| |--2022-03-01.rlgagent.log.gz
| |--2022-03-09.rlgagent.log.gz
| |--2022-01-20.rlgagent.log.gz
| |--2022-02-11.rlgagent.log.gz
| |--rlgagent.log

Logfiles

Logfiles are stored in the logs subdirectory. The agent archives a log file from a previous day on
startup (see above). The current day's file is always named rlgagent.log

Configs

The config.txt is a standard Java properties file. If it is missing either single entries or completely, it
will be created and filled up with the following default settings:

#Settings rlgagent
#Mon Jul 04 15:47:26 CEST 2022
btn01=GPIO 3
btn02=GPIO 4
button_debounce=200
buzzer=GPIO 26
lcd_cols=20
lcd_i2c_address=0x27

Last update: 2024/12/28 12:53 rlgs:en:agents-detail https://flashheart.de/doku.php/rlgs:en:agents-detail

https://flashheart.de/ Printed on 2025/08/16 01:18

lcd_rows=4
led_blu=GPIO 22
led_grn=GPIO 21
led_red=GPIO 1
led_wht=GPIO 2
led_ylw=GPIO 5
loglevel=TRACE
mcp23017_i2c_address=0x20
mpg321_bin=/usr/local/bin/mpg321
mpg321_options=
mqtt_broker=localhost 192.168.239.129
mqtt_clean_session=true
mqtt_max_inflight=1000
mqtt_port=1883
mqtt_qos=2
mqtt_reconnect=true
mqtt_retained=true
mqtt_root=rlg
mqtt_timeout=10
myid=ag51
sir1=GPIO 7
sir2=GPIO 0
sir3=GPIO 6
sir4=GPIO 23
trigger_on_high_sir1=true
trigger_on_high_sir2=true
trigger_on_high_sir3=true
trigger_on_high_sir4=true
uuid=67dc6790-1e58-4b6c-a5f7-74ab04f7f64d
wifi_cmd=iwconfig wlan1

loglevel the verbosity of the log file. possible values: OFF, DEBUG, TRACE, INFO, ERROR,
WARN
uuid a unique id which is used as part of the client id to connect to the MQTT broker. Will be
created on startup, if missing. To get a new uuid on next startup, simply delete this line. NEEDS
TO BE UNIQUE WITHIN THE RLGS SETUP
myid the agent name to be used. The default is ag01. NEEDS TO BE UNIQUE WITHIN THE
RLGS SETUP
led_wht, led_red, led_ylw, led_grn, led_blu, sir1, sir2, sir3, btn01,
btn02, buzzer the Raspi GPIO pin for the corresponding devices (Wiring Pi numbering
scheme). Default sets the assignment to the standard agent PCB.
lcd_cols, lcd_rows dimensions for the LCD.
lcd_i2c_address address on the i2c bus for the connected LCD
mcp23017_i2c_address if a MCP23017 port extender is used, this is the address to find it on
the i2c bus
mqtt_broker Space separated list of brokers. The agent tries to connect to the entries in this
list - one by one. If the connection breaks during the game, the agent keeps trying to reconnect
again.
mqtt_clean_session settings for paho client

see here

https://easyeda.com/tloehr/rlg-mainboard-v11_copy
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#setCleanSession-boolean-

2025/08/16 01:18 5/11 RLG Agent

Flashheart.de - https://flashheart.de/

mqtt_clean_session settings for paho client
see here

mqtt_port port address for the broker
mqtt_qos quality of service to be used for the event messages sent by this agent from 0 to 2.
Where 0 is at most once, 1 at least once, 2 exactly once.
mqtt_max_inflight the maximum number of messages in transit and not yet delivered.
mqtt_reconnect settings for paho client

see here
mqtt_retained sets whether the event messages from this agent should be retained.
mqtt_root the root element of the message topics to subscribe and send to. Keep the
defaults.
mqtt_timeout settings for paho client - [see here](settings for paho client

see here
wifi_cmd only for Raspberry Pis. command line to be execute every 5 seconds. The results are
parsed and sent to the commander via a status event message.

Messaging

The commander and the agents communicate via a MQTT broker.

Every agent has its own command and event channel.

inbound command channel: /<mqtt_root>/cmd/<agent_id>/# will provide orders from
the commander to the agent
outbound event channel: /<mqtt_root>/evt/<agent_id>/# will be used to send
information about what happened to the agent. Like button presses or network connectivity.

Where

mqtt_root
agent_id

are both defined in configs.txt

EXAMPLE: for a default installation these two channels are

inbound command channel: /rlg/cmd/ag01. Commands (sub-channels) can be: signals,
paged, timers, vars. Example: a command to switch off all LEDs would be sent to
/rlg/cmd/ag01/signals with this JSON payload {"led_all":"off"}
outbound event channel: /rlg/evt/ag01. Events (sub-channels) can be: btn01, btn02,
state.

Commands

Every command is sent to its own sub-topic below the agent's command channel. Signals to ag01 are
sent to /rlg/cmd/ag01/signals, LCD content to /rlg/cmd/ag01/paged etc. The examples
below are written with these default settings in mind.

https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#setCleanSession-boolean-
https://en.wikipedia.org/wiki/MQTT#Quality_of_service
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#setAutomaticReconnect-boolean-
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/
https://www.eclipse.org/paho/files/javadoc/org/eclipse/paho/client/mqttv3/MqttConnectOptions.html#setConnectionTimeout-int-
https://en.wikipedia.org/wiki/MQTT

Last update: 2024/12/28 12:53 rlgs:en:agents-detail https://flashheart.de/doku.php/rlgs:en:agents-detail

https://flashheart.de/ Printed on 2025/08/16 01:18

Signals

Signals can be seen (blinking lights) or heard (sirens or buzzers). We are not talking about the mp3
sound files here.

Visual signals

Topic: /rlg/cmd/ag01/lamps

Acoustic signals

Topic: /rlg/cmd/ag01/sirens

The handling of both device classes is the same. So the following information can be applied to both
of them.

Schemes

Signal schemes are lists of on and off durations (in milliseconds) for the specific Raspi pin. Every list
is preceded by the number of repeats. If a scheme should go on forever (until overwritten by a new
command), the repeat_count can be replaced by the infty keyword (in fact, there is no infinity, it is
Long.MAX_VALUE, but for our purpose this would take forever). A repeat_count of 0, turns off the
signal. Like so: 0: or the word off (which is also understood).

The syntax of the scheme is:

<repeat_count>:[on|off],<period_in_ms>;[on|off],<period_in_ms>

Devices (like LEDs or sirens) connected to these pins via a MOSFET transistors or Relays are switched
on and off accordingly.

Standard signal schemes

By default, an agent recognizes some standard schemes which are translated locally. In fact, the
commander makes extensive use of these “macros”, as they cover most of its needs.

Singles
very_long → 1:on,5000;off,1
long → 1:on,2500;off,1
medium → 1:on,1000;off,1
short → 1:on,500;off,1
very_short → 1:on,250;off,1

Recurring
very_slow → infty:on,1000;off,5000
slow → infty:on,1000;off,2000

2025/08/16 01:18 7/11 RLG Agent

Flashheart.de - https://flashheart.de/

normal → infty:on,1000;off,1000
fast → infty:on,500;off,500
very_fast → infty:on,250;off,250
netstatus → infty:on,250;off,750

Buzzer signals
single_buzz → 1:on,75;off,75
double_buzz → 2:on,75;off,75
triple_buzz → 3:on,75;off,75

Hence, a signal with a payload like {"led_red":"slow"} would translate to
{"led_red":"infty:on,1000;off,2000"}.

Dynamic signal schemes

Progress
Time

Devices

The agent abstracts devices from their GPIO counterparts on the Raspi. The following devices are
recognized: for visual: wht, red, ylw, grn, blu.

for acoustics: sir1, sir2, sir3, btn01, btn02, buzzer

“sir” stands for siren. So the meaning of this list should be pretty obvious.

There are 3 device groups:

all → All pins.
led_all → led_wht, led_red, led_ylw, led_grn, led_blu
sir_all → sir1, sir2, sir3

Example:

A signal which causes the agent to buzz two times (75 ms) would have a payload like this:

{"buzzer":"2:on,75;off,75"}

If we want all LEDs to blink every second (until further notice), we would send this:

{"led_all":"infty:on,1000;off,1000"}

or in short:

{"led_all":"normal"}

We can combine multiple payloads into one message. Also for the other commands, not only signals.

{

Last update: 2024/12/28 12:53 rlgs:en:agents-detail https://flashheart.de/doku.php/rlgs:en:agents-detail

https://flashheart.de/ Printed on 2025/08/16 01:18

 "led_all": "infty:on,250;off,2500",
 "sir1": "long"
}

Paged Displays

Topic: /rlg/cmd/ag01/paged

Agents can handle LCDs driven by the Hitachi HD44780 controller chip. LCDs with line/col should have
a text screen dimension of 20×4. As You can see in the JavaDoc for MyLCD,the display output is
organized in pages, which cycle in order by their addition. Refer to the MyLCD class for more details.

Every screen page is identified by a string handle. Please note that there is always a starting page
called page0, which cannot be removed.

Setting the page content

The following payload will set the content of 2 pages. A new page will be created automatically when
needed. It is also automatically removed, when this new page is missing from a later page content
command.

{
 "page1": [
 " >>> BLUE <<< ",
 "${blue_l1}",
 "${blue_l2}",
 "Red->${red_tickets}:${blue_tickets}<-Blue"
],
 "page0": [
 " >>> RED <<< ",
 "${red_l1}",
 "${red_l2}",
 "Red->${red_tickets}:${blue_tickets}<-Blue"
]
}

Content exceeding the supported display dimension (e.g. 20×4) will be ignored. Superfluous lines are
discarded, exceeding lines are truncated.

As You can see, we used template expressions in the last example like “${blue_l1}”. These
expressions refer to a variable (see the next section) and will be replaced by the bound variable
content. The variable content is updated every time the page is displayed.

There also timer variables which are always counted down, even when the page is currently
displayed. So You can display a running timer, even when there is only one page to be displayed. (see
timers)

https://en.wikipedia.org/wiki/Hitachi_HD44780_LCD_controller
https://github.com/tloehr/rlgagent/blob/main/src/main/java/de/flashheart/rlgagent/hardware/abstraction/MyLCD.java

2025/08/16 01:18 9/11 RLG Agent

Flashheart.de - https://flashheart.de/

Variables and template expressions

Topic: /rlg/cmd/ag01/vars

Template expressions are replaced with their corresponding values. These values can be prefixed by
the agent or set dynamically by the commander. Timers are a special case of values. In the above
example we used template expressions already.

You may have noted, that there are some template expressions in the display string like
${agversion}. You will find some detailed explanations in the Displays section of this document.

Preset variables

wifi → the current Wi-Fi signal strength
ssid → ssid of the Wi-Fi connected to.
agversion → current software version of the agent
agbuild → current software build of the agent
agbdate → current software build-date of the agent

Dynamic variables

The commander can set any variable to a specific value to fill out the page templates on the display,
as described above. Example message as generated by the Conquest class.

{
 "red_l2": "",
 "blue_tickets": "250",
 "blue_l1": "",
 "red_l1": "",
 "blue_l2": "",
 "red_tickets": "250"
}

Timers

Topic: /rlg/cmd/ag01/timers

Timers are also variables, but they have to be Long values. The agent interprets those values as
remaining time in seconds and starts to count them down after reception. The timer template is
replaced by the time in the format hh:ss and disappears when the time reaches zero.

{
 "remaining": 61
}

The above message will start a timer at 1 minute 1 second. A display line:

https://docs.oracle.com/javase/8/docs/api/java/lang/Long.html

Last update: 2024/12/28 12:53 rlgs:en:agents-detail https://flashheart.de/doku.php/rlgs:en:agents-detail

https://flashheart.de/ Printed on 2025/08/16 01:18

{
 "timer": "${remaining}"
}

will show up on the LCD as timer: 01:01 - and counting

Events

Events are something that happens to or on the agent. They are reported to the commander.

Buttons

Topic: /rlg/evt/ag01/btn01 or /rlg/evt/ag01/btn02

The use of a button is divided into two separate events:

The first one reporting that the button is pressed down: {"button":"down"}1.
the second one when the button is released again: {"button":"up"}2.

Status

Topic: /rlg/evt/ag01/status

Every 60 seconds an agent reports its current status to the commander. Very important to tell,
whether all agents are working correctly during a match.

{
 "mqtt-broker": "localhost",
 "netmonitor_cycle": 96,
 "wifi": "PERFECT",
 "mqtt_connect_tries": 1,
 "essid": "!DESKTOP!",
 "last_ping": "16.03.22, 15:06:27",
 "link": "--",
 "freq": "--",
 "ping_max": "0.044",
 "bitrate": "--",
 "version": "1.0.1.387",
 "ap": "!DESKTOP!",
 "txpower": "--",
 "ping_success": "ok",
 "powermgt": "--",
 "ping_loss": "0%",
 "ping_min": "0.044",
 "ping_avg": "0.044",

2025/08/16 01:18 11/11 RLG Agent

Flashheart.de - https://flashheart.de/

 "signal": "-30",
 "ping_host": "localhost",
 "timestamp": "2022-03-16T15:06:27.107081+01:00[Europe/Berlin]"
}

From:
https://flashheart.de/ - Flashheart.de

Permanent link:
https://flashheart.de/doku.php/rlgs:en:agents-detail

Last update: 2024/12/28 12:53

https://flashheart.de/
https://flashheart.de/doku.php/rlgs:en:agents-detail

	RLG Agent
	Installation

	Hard- and Software
	Workspace
	Logfiles
	Configs

	Messaging
	Commands
	Signals
	Visual signals
	Acoustic signals
	Schemes
	Standard signal schemes
	Dynamic signal schemes
	Devices

	Paged Displays
	Setting the page content
	Variables and template expressions
	Preset variables
	Dynamic variables
	Timers

	Events
	Buttons
	Status

